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Nanostructured thin-�lm coatings based on titanium nitride, doped with silicon, chromium and aluminium
were the object of this study. The creation of a smooth transition layer was carried out by the changing of a
supplying nitrogen �ow to the vacuum chamber during the application. TiSiN, TiCrN and TiAlN coatings were
deposited. The studies of the structure, elemental and phase composition of the coatings were carried out. Also,
the performance of coatings was investigated. The results can be used in today's technology, such as mechanical
engineering.
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1. Introduction

One of the perspective areas of modern science and
technology is creation and designing multicomponent
nanostructured coatings. This is due to the fact that
these coatings have unique physical and chemical proper-
ties (hardness, strength, wear resistance, heat resistance,
corrosion resistance, etc.) [1�3]. Reducing the size of
crystal grains of the coating allows to achieve its new fun-
damental properties and characteristics. Reducing the
grain size of less than 15 nm leads to lowering the tem-
perature of phase transition, including the melting tem-
perature, thermal conductivity reduction, reduced elastic
modulus, increase hardness, fracture toughness, decrease
in wear resistance, expression of superplasticity at high
temperatures and sharp increase in microhardness [4�6].

Adding a third component to the coating of titanium
nitride, such as chromium, silicon, aluminium, can signif-
icantly improve the performance of the coatings. In par-
ticular the addition of aluminium to titanium nitride in
a magnetron sputtering target composition allows to im-
prove the microhardness, fracture toughness, heat resis-
tance and the Young modulus of complex coating TiAlN
[7�9]. The TiAlN and TiSiN nanocomposites consist-
ing of TiN nanocrystals embedded in the amorphous
AlN or Si3N4 phases have exhibited a super hardness
and excellent thermal stability, being widely applied in
dry and high-speed cutting treatments [10]. The TiCrN
nanocomposite is also of great interest from the point
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of view of practical applications [11]. The goal of this
research is the investigation of a correlation between the
composition and structure of the coating and its mechan-
ical and nanotribological properties.

2. Experimental procedure

Polished stainless steel, hard alloy, graphite, silicon
and single crystal sodium chloride plates freshly split
were used as substrates in all cases. Magnetron deposi-
tions were performed with the usage of Ar+ ions for the
Ti�Al�N, Ti�Si�N and Ti�Cr�N systems by the sputter-
ing of composite targets containing Ti as a main compo-
nent and Al, Si and Cr as the addition in the concentra-
tions from 20 up to 50 at.%.
The nitrogen �ow was controlled by the optical spectra

analyzer S-100. The gradient layers were formed on the
stainless steel samples by the alteration of nitrogen �ow
steering from 0 up to 0.4 Pa. A bias voltage of 150�200 V
was used to improve coating properties. The vacuum
chamber was evacuated to a base pressure of 5×10−4 Pa,
and prior to deposition the substrates were cleaned by
Ar+ sputtering at a bias voltage of 1.5 keV for 30 min
to remove residual pollutants and native oxides. In order
to increase the adhesion between coatings and substrates
the infrared light heating of the samples up to 150�240 ◦C
was used.
The depth distribution of atomic species in the de-

posited layers, was measured by the Rutherford backscat-
tering spectrometry (RBS). The RBS measurements were
performed with 1.5 MeV He+. Structural properties of
coatings were studied by means of transmission electron
microscopy (TEM) and di�raction (TED). The TEM in-
vestigations in plan-view (PV) geometry were carried out
using a 200 keV Hitachi H-800. The method of X-ray
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di�raction (XRD) was applied in order to study phase
composition and to determine the grain size of formed
coatings [12]. To �nd the hardness and the elastic mod-
ules at di�erent loads, we used the Oliver�Pharr tech-
nique [13] (Nanoindenter G200) [14]. Also microhardness
was measured by means of a DuraScan 20 equipment.

3. Results and discussion
Figure 1 shows the RBS spectra of coatings TiAlN de-

posited with varying nitrogen concentration.

Fig. 1. RBS spectra of helium ions with an energy of
1.5 MeV from carbon substrates coated with TiAlN in
di�erent modes: 1 � with the gas drawback, 2 � with
the stoichiometric concentration of nitrogen, 3 � with
an excess of a reactive gas.

It was found that titanium and aluminium present in
the coating in approximately equal proportions and their
concentrations are homogeneous in the depth of the coat-
ing (Fig. 1). Nitrogen concentration is also practically
homogeneous in the depth with a small gradient near the
surface and on the boundary with the substrate. Based
on the analysis of the RBS spectrum and calculated con-
centrations of elements it can be assumed that titanium
and aluminium are in the coating in phases of nitride.
Oxygen concentration in the coating is negligible com-
pared to the concentration of nitrogen, which shows the
high quality of the resulting structures and the absence
of extremely harmful for operational properties of nano-
structured thin-�lm coatings oxides and surface metal
oxide �lms (Fig. 1). It should be noted that titanium
has a substantial peak asymmetry, peaks of silicon are
su�ciently uniform.
The TEM microphotograph of the TiAlN coating and

electron di�raction pattern were obtained (Fig. 2) from
this coating deposited by reactive magnetron sputtering.
It was observed in this image that crystallites are dis-

persed homogeneously in the coating. The fact of the
strong broadening of di�raction peaks in the electron
di�raction pattern proves nanostructuring of the TiAlN
coating (Fig. 2B). Calculated crystallite size amounts to
about 5 nm.
XRD measurements reveal that peaks of titanium ni-

tride and aluminium nitride are highly di�used and form

Fig. 2. Microphotograph of the coating TiAlN (A) and
electron di�raction pattern from the coating TiAlN (B).

one single halo in the di�raction patterns (Figs. 3�5).
As is known, both nitrides � titanium and aluminium
have an isomorphic face-centered lattice and they di�er
only by lattice parameter and, consequently, they present
unrestricted solubility in each other [1]. The atomic ra-
dius of aluminium is less than the atomic radius of ti-
tanium [1]. Assuming that the aluminium atoms re-
place the titanium atoms in the phase of nitride with
the formation of nitride substitutional solid solution, it
will shift the peak of titanium nitride in the direction of
higher angles. Exactly such picture is observed in X-ray
di�raction patterns obtained from the coating TiAlN
(Figs. 3�5). On this basis, it is concluded that titanium
nitride and aluminium nitride are in the state of the sub-
stitution solid solution, i.e. form a phase of complex ni-
tride (Ti,Al)N (Figs. 3�5).

Fig. 3. X-ray di�raction patterns from 0.63 µm TiAlN
coating on stainless steel (a), from 0.86 µm TiAlN coat-
ing on stainless steel (b), from 0.94 µm coating TiAlN
on α-iron (c).

The fact of the strong broadening of peaks (Ti,Al)N
with a formation of a band in the form of a halo on
all di�raction patterns (a typical example is presented in
Fig. 4) means the �ne structure of nanocrystalline TiAlN
coatings. As it was mentioned above, this fact is also
proved by results obtained with TEM, where the broad-
ening of di�raction peaks was registered, too (Fig. 2).
Calculated crystallite size amounts to 4.5 nm, that also
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Fig. 4. X-ray di�raction patterns from the surface of
TiAlN coatings deposited on stainless steel at di�erent
processing time: 55 min (a) and 75 min (b).

Fig. 5. X-ray di�raction patterns from TiAlN coatings
on the substrate of hard alloy, the application time:
55 min (a), 75 min (b).

accords well with results of TEM measurements.

A split of the peaks of an austenitic iron phase was ob-
served on X-ray di�raction patterns of TiAlN coatings on
stainless steel (Fig. 3a,b). This fact indicates the forma-
tion of a thin di�usion layer of a solid solution of nitrogen
in the austenitic iron matrix at the substrate-coating in-
terface.

The presence of the phase of a solid solution of nitrogen
in γ-Fe matrix has been detected in the samples of stain-
less steel coated with TiAlN. CrN phase has not been
detected in the samples coated with TiCrN, also Si3N4

phase has not been detected in the sample coated with
TiSiN. This may indicate that Cr and Si atoms substitute
Ti atoms in the titanium nitride phase with a formation
of a solid solution with a wide range of homogeneity.

Tribological properties were investigated by nanoin-
dentation and microindentation for more accuracy. The
curves of di�erent colors mean repeating of measure-
ments. Exact reproducibility of the results of various
measurements of nanoindentation indicates the unifor-
mity of coatings on di�erent areas of the samples and

the homogeneity of properties of the TiAlN coatings. The
presented curves of hardness indicate a high homogeneity
of properties of the TiAlN coatings in the depth (Fig. 6).

Fig. 6. Graphs of hardness of the coating TiAlN.

Also, microhardness was measured. Microhardness of
TiAlN coating was identi�ed in the range of 23�25 GPa
in the case of deposition of coatings in the mode with
stoichiometric concentration and de�ciency of nitrogen.
Di�erent curves in Fig. 6 mean a repetition of mea-

surement.
Smoothness of load-unload curves of the indentation

indicates the uniformity of TiAlN coatings and their tri-
bological properties in depth (Fig. 7).

Fig. 7. Charge�discharge curves of the indenter on
TiAlN coating.

Di�erent curves in Fig. 7 also mean a repetition of
measurement.
The highest modulus value was recorded on the sam-

ple of the TiAlN coating on a stainless steel substrate,
the least one � on the sample of the TiAlN coating on
a substrate of hard alloy (Fig. 8). Consequently, TiAlN
coating better displays its elastic properties on a softer
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stainless steel substrate and imprints of the indenter re-
covers more after removing of the load.

Fig. 8. Graphs of elasticity of the TiAlN coating.

Di�erent curves in Fig. 8 mean a repetition of mea-
surement.
The microhardness of investigated coatings increases

with a decrease of the load on the indenter, as it can
be seen in Fig. 6. This fact can be explained by an in-
evitable bursting of the thin �lm coating to the substrate
array. Thus the hardness of the substrate itself plays an
important role.
It was also established that the mode of reactive mag-

netron deposition with stoichiometric nitrogen concentra-
tion and with de�ciency of nitrogen can provide better
tribological properties, quality and larger thickness of the
coating than the mode of a deposition with an excess of
nitrogen.
Taking into account the RBS analysis, it can be stated

that the best tribological characteristics of coatings can
be achieved with close to equal concentrations of tita-
nium and aluminium in the original target, and the �nal
coating.

4. Conclusions

Doping titanium nitride coatings with aluminium,
leads to a signi�cant increase in hardness of the applied
coating.
It was found that addition of aluminium in a titanium

nitride coating by co-sputtering from joint target sig-
ni�cantly changes the structure and performance of the
coating.
Aluminium does not form a separate phase in the coat-

ing and exists in a state of solid solution substitution in
the titanium nitride, forming a complex (Ti,Al)N nitride
with face-centered cubic crystal lattice. Its lattice param-
eter is bigger than parameters of TiN and AlN nitrides.
Besides, a formation of a thin di�usion layer of the

transition solid solution of nitrogen in the austenitic iron
was revealed at the substrate-coating interface in the pro-
cess of the reactive magnetron sputtering a coating onto
a stainless steel substrate.

The e�ect of addition of Al on the microhardness and
tribological properties of formed coatings was studied. It
was found that the aluminium concentration of 50% in
the sputtered target leads to the concentration of alu-
minium in the coating of titanium nitride in the range
of 23�25%. This amount of aluminium allows to achieve
a signi�cant increase in hardness of nanostructured com-
posite coating.
It was also revealed that a signi�cant impact on the

performance of super hard thin �lm coatings have prop-
erties of the substrate.
According to the results of the research and identi�ed

changes in the elemental and phase compositions it can
be concluded that the most promising, in order to obtain
the optimum combination of properties, is the method
of reactive magnetron deposition with the stoichiometric
concentration and de�ciency of active nitrogen gas.
The results of this research indicate a signi�cant

prospect for application of these coatings. They can
be applied in various industrial �elds, such as engineer-
ing: hard and superhard coatings for metal cutting tools,
drills, mills, components of friction machine parts, mi-
cromechanical components, and parts.
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